
HPLC Analysis of Metamizole-Lidocaine-Ampicillin Formulation on Heritage MA Mixed-Mode Column

- 1. Impurity (Metamizole)
- 2. Lidocaine
- 3. Ampicillin
- 4. Guaifenesin
- 5. Chlorpheniramine
- 6. Maleic acid
- 7. Impurity (Metamizole)
- 8. Metamizole

Column: Heritage MA

Dimensions: 4.6x150 mm, 3um, 100A

Flow rate: 1 ml/min

Mobile phase: ACN and ammonium formate gradient

Detection: 255 nm

Application Notes

A reversed-phase mixed-mode HPLC method was developed for the simultaneous determination of metamizole, lidocaine, ampicillin, guaifenesin, chlorpheniramine, and maleic acid using the Heritage MA mixed-mode column. These compounds are commonly co-formulated in veterinary and injectable preparations for analgesic, antibiotic, antipyretic, and antihistaminic purposes. Their structural and physicochemical diversity - ranging from highly polar acids to amphiphilic amines - makes simultaneous quantitation challenging on conventional reversed-phase columns.

Biologically, metamizole is a non-opioid analgesic and antipyretic prodrug; lidocaine serves as a local anesthetic and anti-arrhythmic agent; ampicillin provides broad-spectrum antibacterial activity through β -lactam inhibition of cell-wall synthesis; guaifenesin acts as an expectorant and mild muscle relaxant; chlorpheniramine is a first-generation H_1 antihistamine; and maleic acid functions as a counter-ion and pH stabilizer, often forming salts with basic drug components.

The **Heritage MA** stationary phase combines reversed-phase hydrophobic ligands with positively charged ion-exchange sites, providing anion-exchange and cation-exclusion selectivity. This architecture allows simultaneous retention of neutral, basic, and acidic compounds within a single run. Basic drugs such as lidocaine and chlorpheniramine are retained mainly by hydrophobic partitioning, while acidic species - maleic acid, ampicillin, and metamizole anions - interact electrostatically with the positively charged sites.

The **Heritage MA mixed-mode column** demonstrated broad selectivity and robustness for complex multi-drug veterinary formulations, supporting accurate analysis of both ionic and neutral active ingredients.